Smackover Formation/ Upper Jurassic of the Eastern Gulf Rim

Overview

Major new discoveries, both onshore and offshore, are fueling continued interest in Upper Jurassic rocks of the eastern Gulf Coast. This report provides a comprehensive geological study which integrates stratigraphic, geochemical, petrographic, petrophysical, and production data for these rocks in eastern Mississippi, southwestern Alabama, and the Florida Panhandle.

This regional study, representing approximately 10 man-years of geologic research, focuses on the exploration and production potential of the Smackover along the Gulf Rim from the eastern part of the Mississippi Salt Basin to the Apalachicola Embayment. The study area encompasses all or portions of 49 counties and approximately 28,000 square miles in Mississippi, Alabama, and Florida.

More than 12,000 feet of cores from 89 Smackover wells were described. This information is integrated into the stratigraphic framework for this study. Approximately two-thirds of these cores are proprietary.

Approximately 1,500 thinsections from 60 wells were examined. A classification of grain types based on petrographic characteristics and grain size was developed for the Smackover. This summary provides industry with the first attempt to describe and document photographically all the major types of non-skeletal grains found in the upper Smackover. Differentiation of the types of coated grains in the Smackover is a cornerstone for interpreting the depositional environments of these rocks.

Fifteen stratigraphic markers were correlated which have sub-regional and regional importance to Smackover exploration. Markers are defined from the base of the Cotton Valley Group to the Louann Salt or basement.

Stratigraphic correlation of the 2,198 study wells provides a unique database. It provides a three-fold system for regional analysis of Smackover and Haynesville rocks. This analysis is based upon a combination of lithologic and chronostratigraphic markers and log facies characterization. A comparison of these data yields a basin-wide model for Smackover basin evolution, depositional style, and timing of salt and fault movement.

Selected fields for study include Blacksher, Nuxford, Chatom, Blackjack Creek, and Nancy fields. Each field study contains development geology and engineering analyses including evaluations of reservoir drive mechanisms, key well panels showing lithologic and fluid saturation computations, reserve evaluations, and well performance reviews.

Organic geochemical analyses were acquired on 1,116 source rock samples throughout the study area. These analyses of source potential and thermal maturity data were incorporated into a stratigraphic context. From this information, source rock maturity trends were mapped.
Database

2,198 Study Wells
15 Regional and Subregional Markers
89 Cores Described (12,095')
1500 Thinsections

Maps

Regional Maps (1:250000) (1:96000) (1:48000)
15 Isopach Maps
8 Structure Maps
8 Time-Slice Maps
6 Miscellaneous Maps

Field Study Maps (1:24,000)
24 Isopach Maps
6 Structure Maps
6 Location Maps
5 Miscellaneous Maps
5 Lithofacies Fence Diagrams

Cross Sections

7 Regional Cross Sections (VS 1”=100’)

19 Field Cross Sections (VS 2.5” = 100’)

Organic Geochemical Analyses

1,116 core samples selected for Rock-Eval analysis including total organic carbon, thermal maturity data, and hydrogen and oxygen indices.

Filed Studies

Blackjack Creek, Blacksher, Chatom, Huxford, Nancy

Report Contents

TEXT AND FIGURES - This fully-illustrated report includes discussion, figures, and color photographs of rocks and thinsections on such topics as: Regional Tectonic and Environmental Setting, Depositional History, Lithofacies, Depositional Models, Source Rock Analyses, Petrography and Diagenetic History, Field Studies, and Exploration Recommendations.
RESERVOIR CHARACTERIZATION - This section includes: core descriptions; core-to-log comparisons and petrographic summaries of the cores, plus graphic displays of at least six key wells used as references to illustrate and to explain the relationship of lithofacies to log response as well as porosity, permeability and other log-derived measurements of reservoir performance.

STRATIGRAPHIC DATA - Well identification and stratigraphic marker data for the 2,196 study wells in this study are available in digital form. This database includes the 15 stratigraphic tops, lithologic markers, and chronostratigraphic picks data for the study wells. This information is referenced by well name, operator, and API number.

MAPS AND CROSS SECTIONS - These two files contain a grid of cross sections and maps. Fifty-six field maps, 20 field cross sections, 37 regional maps and seven regional cross sections are provided for correlation and mapping applications. The regional maps show the distribution of wells, structural elements, sedimentary and diagenetic facies, porosity, and production.
Smackover/Upper Jurassic of the Eastern Gulf Rim

Study Boundary

GULF OF MEXICO
Smackover/Upper Jurassic
of the
Eastern Gulf Rim

Study
Table of Contents
SMACKOVER/UPPER JURASSIC
OF THE
EASTERN GULF RIM

TABLE OF CONTENTS

Preface ... ii
List of Maps and Cross Sections .. x
Acknowledgements .. xiv

SUMMARY

Objectives of the Study ... S-2
Tectonic Setting .. S-3
Depositional Setting and Stratigraphy .. S-4
Smackover Deposition .. S-4
Smackover Porosity ... S-5
Smackover Source Rocks .. S-6
Field Studies ... S-7
Exploration Recommendations .. S-9

CHAPTER 1 - INTRODUCTION

General ... 1-2
Objectives of the Study ... 1-3
Study Area .. 1-4
Previous Work ... 1-4
General Stratigraphy .. 1-4
Exploration History ... 1-5
1931-1950 ... 1-6
1951-1963 ... 1-6
1963-1975 ... 1-7
1975-Present ... 1-8
Rate of Smackover Discoveries .. 1-9
Economics .. 1-10
Methods .. 1-11
Data ... 1-12
Study Wells ... 1-12
Analysis of Wireline Logs ... 1-12
Cores .. 1-12
Petrography .. 1-12
Reservoir Engineering Analysis ... 1-13
Report Format .. 1-13
CHAPTER 2 - REGIONAL TECTONIC SETTING

Introduction ... 2-2
Tectonic Framework .. 2-2
 Basement .. 2-2
 Faults ... 2-5
 Salt and Salt Tectonism .. 2-7
Tectonic History ... 2-9
 Pangea and the Permian .. 2-9
Late Triassic - Rifting, Redbeds, and Megashears ... 2-10
Early Jurassic and Crustal Attenuation ... 2-12
Middle Jurassic and the Flooding of the Gulf .. 2-13
Late Jurassic - Oxfordian Deposition and Seafloor Spreading 2-14
Late Jurassic - Crustal Subsidence and Opening to the Atlantic 2-15
Discussion ... 2-16

CHAPTER 3 - STRATIGRAPHY, CORRELATIONS, AND LOG CHARACTERISTICS

General Introduction ... 3-2
Methods and Correlations .. 3-2
 Stratigraphic Markers ... 3-3
 Electrofacies .. 3-3
 Correlation Qualifier Codes .. 3-5
Cross Section Display .. 3-6
Map Display .. 3-7
Mississippi, Alabama and Western Florida .. 3-7
 Pre-Smackover Formations ... 3-8
 Pre-Mesozoic "Basement" ... 3-8
 Eagle Mills Formation .. 3-8
 Louann-Werner Evaporites ... 3-9
 Norphlet Formation ... 3-10
Smackover Formation ... 3-11
 Basal Smackover Interval ... 3-12
 Lower Smackover Interval ... 3-12
 Upper Smackover Interval ... 3-13
Haynesville Formation .. 3-16
 Lower Haynesville (H600-TSMK) Interval ... 3-17
 Massive Halite and Anhydrite .. 3-17
 Middle Haynesville (H400-H600) Interval ... 3-19
 Upper Haynesville (H100-H400) Intervals ... 3-20
 Haynesville Time-Slice Maps ... 3-20

Regional Cross Section Summary ... 3-21
 Regional Cross Section A-A' .. 3-22
 Regional Cross Section B-B' .. 3-22
 Regional Cross Section C-C' .. 3-23
 Regional Cross Section D-D' .. 3-24
 Regional Cross Section E-E' .. 3-25
 Regional Cross Section Y-Y' .. 3-25
 Regional Cross Section Z-Z' .. 3-26
Tides .. 5-9
Paleostructure and Salt Tectonics .. 5-9
Depositional History .. 5-12
Implications for Hydrocarbon Exploration 5-12

CHAPTER 6 - DEPOSITIONAL MODELS

Introduction .. 6-2
Norphlet Formation Description ... 6-3
 Depositional Model ... 6-4
Smackover formation .. 6-5
 Basal Smackover Description ... 6-5
 Depositional Model ... 6-5
Lower Smackover Description ... 6-7
 Depositional Model ... 6-8
Upper Smackover Description ... 6-11
 Depositional Model ... 6-13
Haynesville Formation .. 6-16
Massive Anhydrite .. 6-17
Massive Halite ... 6-19
Bedded Evaporites, Carbonates, and Siliciclastics 6-22

CHAPTER 7 - PETROGRAPHY, POROSITY, AND DIAGENESIS

Introduction .. 7-2
Methods .. 7-3
Porosity Types ... 7-4
 Interparticle Porosity .. 7-4
 Norphlet formation .. 7-5
 Updip Smackover Sandstones ... 7-6
 Upper Smackover Limestones ... 7-7
 Dolomitized Grainstones ... 7-9
 Intercrystalline Porosity .. 7-9
 Moldic Porosity .. 7-10
 Vuggy Porosity .. 7-11
 Miscellaneous Porosity Types .. 7-12
Distribution of Porosity .. 7-14
Dolomitization .. 7-16
 Distribution of Dolomite ... 7-17
Conclusions ... 7-18

CHAPTER 8 - PETROPHYSICS

Introduction .. 8-2
Data Preparation .. 8-2
Determination of Effective Porosity 8-2
Fluid Saturations .. 8-3
Core-To-Log Comparisons ... 8-5
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithofacies and Petrography</td>
<td>10-28</td>
</tr>
<tr>
<td>Geometry and Distribution of Facies</td>
<td>10-29</td>
</tr>
<tr>
<td>Structure and Structural Development</td>
<td>10-29</td>
</tr>
<tr>
<td>Reservoir Engineering</td>
<td>10-30</td>
</tr>
<tr>
<td>Porosity and Permeability Data</td>
<td>10-30</td>
</tr>
<tr>
<td>Cumulative Porosity and Permeability Analyses</td>
<td>10-31</td>
</tr>
<tr>
<td>Recovery Factors and Efficiency</td>
<td>10-32</td>
</tr>
<tr>
<td>Production Decline Curves</td>
<td>10-33</td>
</tr>
<tr>
<td>Pickett Plots and Bulk Volume Water (BVW)</td>
<td>10-33</td>
</tr>
<tr>
<td>Drive Mechanism</td>
<td>10-34</td>
</tr>
<tr>
<td>Field Recovery</td>
<td>10-35</td>
</tr>
</tbody>
</table>

Huxford Field

- Introduction and Drilling History | 10-37|
- Reservoir Stratigraphy | 10-38|
- Lithofacies and Petrography | 10-38|
- Geometry and Distribution of Facies | 10-39|
- Structure and Depositional History | 10-39|
- Reservoir Engineering | 10-40|
- Porosity and Permeability Data | 10-40|
- Cumulative Porosity and Permeability Analyses | 10-41|
- Recovery Factors and Efficiency | 10-42|
- Production Decline Curves | 10-44|
- Pickett Plots and Bulk Volume Water (BVW) | 10-44|
- Drive Mechanism | 10-45|
- Field Recovery | 10-46|

Chatom Field

- Introduction and Drilling History | 10-48|
- Stratigraphy | 10-49|
- Facies and Petrography | 10-50|
- Geometry and Distribution of Facies | 10-50|
- Structure and Depositional History | 10-51|
- Reservoir Engineering | 10-51|
- Porosity and Permeability Data | 10-51|
- Cumulative Porosity and Permeability Analyses | 10-52|
- Reservoir Fluid and Recovery Mechanism | 10-54|
- Reservoir Performance | 10-54|

Blackjack Creek Field

- Introduction and Drilling History | 10-59|
- Stratigraphy | 10-60|
- Facies and Petrography | 10-60|
- Geometry and Distribution of Facies | 10-61|
- Structure and Depositional History | 10-61|
- Reservoir Engineering | 10-62|
- Porosity and Permeability Data | 10-62|
- Cumulative Porosity and Permeability Analyses | 10-64|
- Recovery Factors and Efficiency | 10-65|
- Production Decline Curves | 10-66|
- Pickett Plots and Bulk Volume Water (BVW) | 10-67|
CHAPTER 10 - APPENDIX 1
BLACKJACK CREEK FIELD
Historical Review of Field Development and Production History

Introduction .. 10-A2
Exploration and Field Discovery 10-A3
Field Delineation 10-A5
 Unitization and Development Planning 10-A7
 Geological and Engineering 10-A7
 Reservoir and Fluid Properties 10-A7
 Well Spacing 10-A8
 Estimates of Original Oil in Place and Recoverable Reserves 10-A8
 Field Well Producing Rates 10-A8
 Blackjack Creek Field Production and Treatment Facility 10-A9
 Estimates of Primary Production 10-A10
 Participation in the Blackjack Creek Field Unit 10-A11
 Unitization 10-A12
Field Production History 10-A12
 Introduction 10-A12
 First Production at the Blackjack Creek Field 10-A12
 Peripheral Waterflood 10-A12
 Production Problems 10-A13
 Significance of Reservoir Bitumens 10-A14
 Significant Events at the Blackjack Creek Field Through 1988 10-A15
Conclusions 10-A15

CHAPTER 11 - EXPLORATION RECOMMENDATIONS

Introduction .. 11-2
Exploration Fairways 11-3
 Updip Smackover North of Peripheral Fault Zone 11-3
 Jasper County, Mississippi 11-4
 Butler and Marengo Ridges 11-4
 Manila Embayment 11-5
 Conecuh Ridge 11-5
 Updip Conecuh Embayment 11-6
 West Flank of the Pensacola Ridge 11-7
 Peripheral Fault Zone and Adjacent Areas 11-7
 Gilbertown-Pickens Trend in Eastern Mississippi 11-8
 Gilbertown-Pickens Trend in Clarke County, Alabama 11-9
 West Bend Fault System 11-11
 Pollard-Foshee Fault System 11-12
 Interior Basins of the Smackover Shelf 11-13
 Mississippi Salt Basin 11-13
 Mobile Graben Area 11-16
Downdip Conecuh Embayment .. 11-17
Wiggins Arch Area ... 11-18
Apalachicola Embayment ... 11-20
Offshore Region .. 11-20
Alabama Coastal Waters ... 11-21
Destin Dome ... 11-22
Desoto Salt Basin ... 11-22
West Florida Shelf ... 11-23
Middle Ground Arch .. 11-24
Regional Statistics/Economics of Upper Smackover Reservoirs 11-24

BIBLIOGRAPHY

Bibliography ...B1
REGIONAL MAPS

PANEL-SIZED MAPS IN PORTFOLIO

Structure Maps
- Top of Norphlet (TNOR)
- Top of Smackover (TSMK)
- Middle of Haynesville (H400/HSO0)

Isopach Maps
- Smackover (TSMK-TNOR)
- Upper Smackover (TSMK-TLS)
- Lowermost Haynesville (H600-TSMK)

Electrofacies Map, Net Massive Evaporites (H600-TSMK)

API Index Overlay

PAGE-SIZED MAPS IN TEXT AND FIGURES

Structure Map, Top Norphlet Formation (TNOR)
Structure Map, Top of Smackover Formation (TSMK)
Isopach Map, Smackover Formation (TSMK-TNOR)
Isopach Map, Basal Smackover Interval (TBS-TNOR)
Isopach Map, Basal and Lower Smackover Intervals (TBS-TNOR)
Isopach Map, Upper Smackover Interval (TSMK-TLS)
Net Sandstone Map, Smackover Formation (TSMK)
Structure Map, Middle Haynesville Formation (H400-HSO0)
Isopach Map, Haynesville Formation (THVL-TSMK)
Isopach Map, Lowermost Haynesville Interval (H600-TSMK)
Net Massive Anhydrite and Halite Map, Lowermost Haynesville Interval (H600-TSMK)
Isopach Map, H400-H600 Interval
Isopach Map, H200-H400 Interval
Isopach Map, H100-H200 Interval
Time-Slice Map, Below H600
Time-Slice Map, Above H600
Time-Slice Map, Below H400
Time-Slice Map, Above H400
Time-Slice Map, Below H200
Time-Slice Map, Above H200
Time-Slice Map, Below H100
Time-Slice Map, Above H100

APALACHICOLA EMBAYMENT PAGE-SIZED MAPS IN TEXT AND FIGURES

Regional Bouguer Anomaly Map
Subcrop Map of the Elements Comprising the Pre-Werner/Louann Surface
Structure Map Drawn on the Norphlet Formation
Isopach Map, Lower Smackover Interval
Isopach Map, Percentage of Carbonate in the Smackover Formation
Isopach Map, Upper Smackover Interval
Structure Map, Top of Smackover Formation
FIELD MAPS

These maps are page-sized figures in the Text and Figures

Fig. # Description
9.7 Distribution of organic carbon values of Smackover samples
9.8 Distribution of total organic carbon in the lower Smackover interval
9.9 Distribution of total organic carbon in the upper Smackover interval
9.10 Contour map of Tmax values
10.1 Location map of five Smackover field studies

Nancy Field
10.2 Well and cross section location map
10.8 Lithofacies fence diagram
10.13 Structure map, top Smackover equivalent (H900)
10.14 Isopach map, lower Haynesville (H600-H900)
10.15 Isopach map, anhydrite and sandy carbonate facies thickness, upper Smackover (H900-S106)
10.16 Isopach map, thickness of grain-rich facies, lower Smackover (S306-TBS)
10.23 Isopach map, porosity-feet
10.24 Contour map, ultimate recovery
10.31 Rate of water/oil ratio increase map
10.33 Contour map, estimated return on investment

Blacksheer Field
10.34 Well and cross section location map
10.41 Lithofacies fence diagram
10.42 Isopach map, upper Smackover grainstone thickness
10.43 Isopach map, permeability barrier thickness
10.44 Structure map, top Smackover
10.47 Isopach map, total Smackover (TSMK-TNOR)
10.48 Isopach map, lower Haynesville (H600-TSMK)
10.54 Isopach map, porosity-feet
10.55 Flow capacity map
10.56 Contour map, ultimate recovery
10.62 Rate of water/oil ratio increase map

Huxford Field
10.64 Well and cross section location map
10.70 Lithofacies fence diagram
10.71 Isopach map, distribution of porous facies in the Smackover
10.72 Structure map, top Smackover (TSMK)
10.75 Isopach map, total Smackover thickness (TMA-TBAS)
10.77 Isopach map, lower Haynesville (H600-TMA)
10.84 Isopach map, porosity-feet
10.85 Contour map, ultimate recovery
10.92 Rate of water/oil ratio increase map

Chatom Field

10.93 Well and cross section location map
10.95 Lithofacies fence diagram
10.96 Isopach map, zone I porous grainstone
10.97 Isopach map, zone II porous grainstone
10.98 Isopach map, zone III porous grainstone
10.99 Isopach map, total upper Smackover porous grainstone
10.102 Structure map, top Smackover (TSMK)
10.103 Isopach map, lower Haynesville (H600-TSMK)
10.110 Isopach map, porosity-feet

Blackjack Creek

10.118 Well and cross section location map
10.123 Lithofacies fence diagram
10.126 Isopach map, upper grainstone/packstone thickness (TSMK-S101)
10.128 Structure map, distribution of lower Smackover grainstone
10.129 Structure map, top of Smackover
10.132 Isopach map, lower Haynesville thickness (H600-TSMK)
10.139 Isopach map, porosity-feet
10.140 Contour map, ultimate recovery
10.141 Flow capacity map
10.148 Rate of water/oil ratio increase map
10.149 Isopach maps, producing watercut in 1981 and 1984
CROSS SECTIONS

REGIONAL CROSS SECTIONS
A-A' (4 panels)
B-B' (5 panels)
C-C' (4 panels)
D-D' (3 panels)
E-E' (1 panel) Apalachicola Embayment

Y-Y' (3 panels)
Z-Z' (9 panels) Apalachicola Embayment

FIELD CROSS SECTIONS

Nancy Field
Stratigraphic Cross Section A-A', B-B'
Structural Cross Section A-A', B-B'

Blackshear Field
Stratigraphic Cross Section A-A', B-B'
Structural Cross Section A-A', B-B'

Huxford Field
Stratigraphic Cross Section A-A', B-B'
Structural Cross Section A-A', B-B'

Chatom Field
Stratigraphic Cross Section A-A', B-B'
Structural Cross Section A-A', B-B'

Blackjack Field
Stratigraphic Cross Section A-A', B-B'
Structural Cross Section A-A', B-B'
Smackover/Upper Jurassic of the Eastern Gulf Rim

Selected Figures from the Study
Figure 1.3. Location of GDI's study area and perspective view of the major paleogeographic features that influenced deposition of the Upper Jurassic rocks described in this study.
Figure 2.4. Crustal types beneath the Gulf consist of oceanic and variously attenuated forms of continental crust (Winker and Buffler, 1988). This attenuated (transitional) continental crust hosts many of the "highs" and "lows" that have influenced sedimentation since Jurassic time. Labels: (lows or troughs) L1, Naples; L2, St. Petersburg; L3, Desoto; L4, Mississippi; L5, North Louisiana; L6, East Texas; L7, Chihuahua-Bisbee; L8, Sabinas; L9, Magicatzin; L10, Chicontepec; L11, Isthmian; L12, Chiapas; (highs or arches) H1, Pinellas; H2, Peninsula; H3, Middle Ground; H4, DeSoto; H5, Wiggins; H6, Monroe; H7, LaSalle; H8, Sabine; H9, San Marcos; H10, Aldama; H11, Coahuila; H12, Burro-Picacho; H13, Tamaulipas; H14, Miquihuana; H15, Guaxcama; H16, Tuxpan; H17, Chiapas; H18, Maya-Quintana Roo.
Figure 3.54. Schematic of regional cross-section A-A' showing stratigraphic relationships.
Figure 4.20C. Example of SMF-24 (Intraclast Packstone to Grainstone) and SMF-25 (Pisoid Grainstone to Packstone). #4 ATIC 35-2, Escambia Co., AL, 14,733 ft. Another sample of a pisoid grainstone containing vadoids and infiltrated geopetal sediment of peloids and some micrite. This sample comes from Huxford Field on the Conecuh Ridge. Complete dolomitization has not obscured the textures of the original grains or filled the interparticle porosity (although dolomite cement partly fills the pores shown here). The sample shown here comes from a downdip wet well on the flank of the Huxford Field structural closure.

Figure 4.20D. Example of SMF-24 (Intraclast Packstone to Grainstone) and SMF-25 (Pisoid Grainstone to Packstone). #1 Caraway 26-12, Escambia Co., AL, 14,707 ft. This sample of a pisoid packstone interpreted to have formed in a soil zone is also from Huxford Field. Note the poor sorting of the grains, the irregular rims on some grains, the dolomite-filled sheet crack, and the composite nature of the large grain at top center. These textures support the interpretation that this microfacies formed during times of subaerial exposure and vadoid formation.